skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Shun‐rong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The need for high precision measurements of vertical winds with uncertainties on the scale of 3–5 m s 1 and a temporal cadence of 1–2 min to achieve detection of gravity wave (GW) structure has made it exceedingly difficult to study the response of the thermosphere to the propagation of GW activity. Herein we present subauroral, midlatitude thermospheric wind and temperature observations using redline 630 nm measurements obtained with a 15 cm narrow field Fabry-Pérot Interferometer (FPI), named the Hot Oxygen Doppler Imager (HODI). These measurements were obtained in a first light campaign at Jeffer Observatory ( 41.03 ° N, 74.83 ° W) located in Jenny Jump State Forest in northwestern New Jersey. The heightened sensitivity of HODI enables analysis of observations with uncertainties of approximately 3–5 m s 1 for vertical wind speeds and 10–15 K for temperatures for 2-min exposures. Data was collected during periods of both geomagnetically quiet and active conditions, and GW structures were seen in both data sets. One detailed observation, taken the night of 25 July 2022, enabled the 90 ° phase shift between vertical winds and temperatures to be inferred, as per standard GW polarization relations with weak viscous dissipation. However, most other observations are found to have little correlation between the two series of temperature and vertical wind. We interpret this to be a result of the propagation and interaction of multiple GW events superimposed upon one another. Wave-like structures in the ionosphere observed in differential total electron count maps, or traveling ionospheric disturbances (TIDs), are often related to GW induced processes, and we provide comparisons of selected wave events observed by HODI to TIDs. These results suggest in a general sense that a relationship may exist between wave fluctuations seen in both the neutral atmosphere and the ionosphere. However, we suggest that the 35–70 km vertical extent of the 630 nm nightglow layer combined with an environment of multiple GW events with differing propagation speeds and vertical wavelengths may have the effect of diminishing or eliminating possible existing temperature and vertical wind correlation. 
    more » « less
    Free, publicly-accessible full text available June 25, 2026
  2. Abstract Based on the vertical Total Electron Content (TEC) data observed by the Global Navigation Satellite System in the northern hemisphere, a large area of low plasma density during summer at high latitudes, termed decreased TEC region, was investigated statistically between 2014 and 2024. Compared with the classical depleted structures that usually occur in the nighttime F region at high latitudes during winter, decreased TEC region is usually found in the sunlit polar cap ionosphere during summer. The decreased TEC region is predominantly located in regions above 70° magnetic latitude for moderate and high solar activity. The lower‐TEC region is biased towards the dawn and midnight sectors. Along the 18:25–06:25 Magnetic Local Time meridian, the depth of the decreased TEC region reached 7.6TECu in 2014. The decreased TEC region is deeper for higher Kp (Kp > 2) than for low Kp (Kp ≤ 2). 
    more » « less
    Free, publicly-accessible full text available April 28, 2026
  3. Abstract. Six specialized radio receivers were developed to measure the Doppler shift of amplitude modulation (AM) broadcast radio carrier signals due to ionospheric effects. Five were deployed approximately in a circle at a one-hop distance from an 810 kHz clear-channel AM transmitter in Schenectady, New York, and the sixth was located close to the transmitter, providing a reference recording. Clear-channel AM signals from New York City and Connecticut were also received. The experiment confirmed detection of traveling ionospheric disturbances (TIDs) and measurement of their horizontal phase velocities through monitoring variations in the Doppler shift of reflected AM signals imparted by vertical motions of the ionosphere. Comparison of 12 events with simultaneous global navigation satellite system (GNSS)-based TID measurements showed generally good agreement between the two techniques slightly more than half the time and substantial differences slightly less than half the time, with differences attributable to differing sensitivities of the techniques to wave altitude and characteristics within a complex wave environment. Detected TIDs had mostly southward phase velocities, and in four cases they were associated with auroral disturbances that could plausibly be their sources. A purely automated software technique for event detection and phase velocity measurement was developed and applied to 1 year of data, revealing that AM Doppler sounding is much more effective when using transmitter signals in the upper part of the AM band (above 1 MHz) and demonstrating that the AM Doppler technique has promise to scale to large numbers of receivers covering continent-wide spatial scales. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Abstract Anthropogenic greenhouse gas emissions significantly impact the middle and upper atmosphere. They cause cooling and thermal shrinking and affect the atmospheric structure. Atmospheric contraction results in changes in key atmospheric features, such as the stratopause height or the peak ionospheric electron density, and also results in reduced thermosphere density. These changes can impact, among others, the lifespan of objects in low Earth orbit, refraction of radio communication and GPS signals, and the peak altitudes of meteoroids entering the Earth's atmosphere. Given this, there is a critical need for observational capabilities to monitor the middle and upper atmosphere. Equally important is the commitment to maintaining and improving long‐term, homogeneous data collection. However, capabilities to observe the middle and upper atmosphere are decreasing rather than improving. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  5. Abstract We investigated the effects of storm‐time diffuse auroral electron precipitation on ionospheric Pedersen and Hall conductivity and conductance during the CME‐driven St. Patrick's Day storms of 2013 (minDst = −131 nT) and 2015 (minDst = −233 nT). These storms were simulated using the magnetically and electrically self‐consistent RCM‐E model with STET modifications, alongside the B3C auroral transport code to compute ionospheric conductivities and height‐integrated conductance. The simulation results were validated against conductance inferred from Poker Flat Incoherent Scatter Radar (PFISR) and Millstone Hill Incoherent Scatter Radar (MHISR) measurements. Our simulations show that the magnetic latitude and local time distribution of Pedersen and Hall auroral conductance strongly correlate with diffuse electron precipitation flux, with the plasmapause marking the low‐latitude boundary of conductance. Simulated Pedersen/Hall conductance agrees reasonably well with PFISR measurements at 65.9° MLAT during diffuse auroral precipitation. During the intense 2015 storm, diffuse aurora extended down to 52.5° MLAT, with simulated conductance agreeing within a factor of two with MHISR observations. Discrete auroral arcs observed during both storms enhanced PFISR conductance by tens of siemens, though these enhancements were not captured by the model. Additionally, the simulated electric intensity showed development of sub‐auroral polarization streams (SAPS) and dawn SAPS features and followed the general trend of Poker Flat electric intensity at 65.9° MLAT during diffuse aurora, despite being updated every 5 min. The overall agreement between simulated ionospheric conductance and electric intensity with observations highlights the model's capability during diffuse auroral precipitation. 
    more » « less
  6. Abstract The May 2024 super storm is one of the strongest geomagnetic storms during the past 20 years. One of the most remarkable ionospheric responses to this event over East and Southeast Asia is the complex ionospheric fluctuations following the storm commencement. The fluctuations created multiple oscillations of total electron content (TEC) embedded in the diurnal variation, with amplitudes up to 10 TECu. Along the same latitude, the fluctuations were nearly synchronized over a wide longitude span up to 35°. In the meridional direction, the fluctuations over low latitudes were the most significant and complex, which contained two main components, the poleward extending oscillations originated from the magnetic equator, and the equatorward propagating traveling ionospheric disturbances (TIDs) from high latitudes. The TIDs likely occurred around the globe. The storm‐time interplanetary electric fields penetrating into equatorial latitudes of the ionosphere and the auroral energy input were suggested to drive the poleward extending oscillations and the equatorward TIDs, respectively. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  7. Abstract This paper conducts a multi‐instrument and data assimilation analysis of the three‐dimensional ionospheric electron density responses to the total solar eclipse on 08 April 2024. The altitude‐resolved electron density variations over the continental US and adjacent regions are analyzed using the Millstone Hill incoherent scatter radar data, ionosonde observations, Swarm in situ measurements, and a novel TEC‐based ionospheric data assimilation system (TIDAS) with SAMI3 model as the background. The principal findings are summarized as follows: (a) The ionospheric hmF2 exhibited a slight enhancement in the initial phase of the eclipse, followed by a distinct reduction of 20–30 km in the recovery phase of the eclipse. The hmF2 in the umbra region showed a post‐eclipse fluctuation, characterized by wavelike perturbations of 10–25 km in magnitude and a period of 30 min. (b) There was a substantial reduction in ionospheric electron density of 20%–50% during the eclipse, with the maximum depletion observed in the F‐region around 200–250 km. The ionospheric electron density variation exhibited a significant altitude‐dependent feature, wherein the response time gradually delayed with increasing altitude. (c) The bottomside ionospheric electron density displayed an immediate reduction after local eclipse began, reaching maximum depletion 5–10 min after the maximum obscuration. In contrast, the topside ionospheric electron density showed a significantly delayed response, with maximum depletion occurring 1–2.5 hr after the peak obscuration. 
    more » « less
  8. The term “Medium-Scale Traveling Ionospheric Disturbances” is used to describe a number of different propagating phenomena in ionospheric plasma density with a scale size of hundreds of km. This includes multiple generation mechanisms, including ion-neutral collisions, plasma instabilities, and electromagnetic forcing. Observational limitations can impede characterization and identification of MSTID generation mechanisms. We discuss inconsistencies in the current terminology used to describe these and provide a set of recommendations for description and discussion. 
    more » « less
    Free, publicly-accessible full text available February 12, 2026
  9. Abstract Plasma blob is generally a low‐latitude phenomenon occurring at the poleward edge of equatorial plasma bubble (EPB) during post‐sunset periods. Here we report a case of midlatitude ionospheric plasma blob‐like structures occurring along with super EPBs over East Asia around sunrise during the May 2024 great geomagnetic storm. Interestingly, the blob‐like structures appeared at both the poleward and westward edges of EPBs, reached up to 40°N magnetic latitudes, and migrated westward several thousand kilometers together with the bubble. The total electron content (TEC) inside the blob‐like structures was enhanced by ∼50 TEC units relative to the ambient ionosphere. The blob‐like structure at the EPB poleward edge could be partly linked with field‐aligned plasma accumulation due to poleward development of bubble. For the blob‐like structure at the EPB west side, one possible mechanism is that it was formed and enhanced accompanying the bubble evolution and westward drift. 
    more » « less
    Free, publicly-accessible full text available November 16, 2025
  10. Abstract This study investigates the ionospheric total electron content (TEC) responses in the 2‐D spatial domain and electron density variations in the 3‐D spatial domain during the annular solar eclipse on 14 October 2023, using ground‐based Global Navigation Satellite System (GNSS) observations, a novel TEC‐based ionospheric data assimilation system (TIDAS), ionosonde measurements, and satellite in situ data. The main results are summarized as follows: (a) The 2‐D TEC responses exhibited distinct latitudinal differences. The mid‐latitude ionosphere exhibited a more substantial TEC decrease of 25%–40% along with an extended recovery time of 3–4 hr. In contrast, the equatorial and low‐latitude ionosphere experienced a smaller TEC reduction of 10%–25% and a faster recovery time of 20–50 min. The minimal eclipse effect was observed near the northern equatorial ionization anomaly crest region. (b) The ionospheric electron density variations during the eclipse were effectively reconstructed by TIDAS data assimilation in the 3‐D domain, providing important altitude information with validity. (c) The ionospheric electron density variations showed a notable altitude‐dependent feature. The eclipse led to a substantial electron density reduction of 30%–50%, with the maximum depletion occurring around the ionospheric F2‐layer peak height (hmF2) of 250–350 km. The post‐eclipse recovery of electron density exhibited a relatively slower pace near the F2‐layer peak height than that at lower and higher altitudes. 
    more » « less